• 注:本文只提供基本思路,不提供定理的证明,否则过于冗长。如果出现错误或者有什么补充的类型,欢迎联系~

三角型行列式

  • 主对角型

a11a22ann=a11a21a22an1an2ann=a11a11a11a22a11ann=k=1nakk\begin{vmatrix}a_{11}& & & \\&a_{22} & & \\& &\ddots & \\& & &a_{nn} \end{vmatrix}=\begin{vmatrix}a_{11}& & & \\a_{21}&a_{22} & & \\\vdots&\vdots &\ddots & \\a_{n1}& a_{n2} &\cdots &a_{nn}\end{vmatrix}=\begin{vmatrix} a_{11}&a_{11} &\cdots &a_{11} \\&a_{22} & \cdots & a_{11}\\ & &\ddots &\vdots \\& & &a_{nn}\end{vmatrix}=\prod_{k=1}^{n} a_{kk}

  • 副对角型

00a1,n0a2,n10an100=a11a1,n1a1,na21a2,n10an100=00a1,n0a2,n1a2nan1an,n1ann\left| \begin{array}{cccc}0&\cdots&0&\mathrm{a_{1,n}}\\0&\cdots&\mathrm{a_{2,n-1}}&0\\\vdots&&\vdots&\vdots\\\mathrm{a_{n1}}&\cdots&0&0\end{array}\right| =\left| \begin{array}{cccc}a_{11}&\cdots&a_{1,n-1}&\mathrm{a_{1,n}}\\a_{21}&\cdots&\mathrm{a_{2,n-1}}&0\\\vdots&&\vdots&\vdots\\\mathrm{a_{n1}}&\cdots&0&0\end{array}\right|=\left| \begin{array}{cccc}0&\cdots&0&\mathrm{a_{1,n}}\\0&\cdots&\mathrm{a_{2,n-1}}&a_{2n}\\\vdots&&\vdots&\vdots\\\mathrm{a_{n1}}&\cdots&a_{n,n-1}&a_{nn}\end{array}\right|

=(1)n(n1)2a1na2,n1an1=(1)n(n1)2i=1nai,n+1i=(-1)^{\frac{n(n-1)}{2}}a_{1n}a_{2,n-1}\ldots a_{n1} =(-1)^{\frac{n(n-1)}{2}}\prod_{i=1}^{n}a_{i,n+1-i}

通用方法

  • 也叫打洞法,是将行列式化为主对角型行列式计算的方法。
  • 基本思路为,用第一行的元素消去后面行的第一列的元素,再用第二行的元素消去后面行第二列的元素,以此类推,直到化简成主对角型行列式。
  • 就是简单地利用行列式的性质即可,具体实现不再赘述。
  • 缺点:抽象行列式不适用,大型行列式计算耗时。

行(列)和相等的行列式

  • 基本思路
    • 将全部的行(列)加在一起放在第一行(列),提取公因式,再化简成对角型行列式

x+a1a2ana1x+a2ana1a2x+an=x+i=1naia2anx+i=1naix+a2anx+i=1naia2x+an\begin{vmatrix}x+a_1&a_2&\cdots&a_n\\a_1&x+a_2&\cdots&a_n\\\vdots&\vdots&&\vdots\\a_1&a_2&\cdots&x+a_n\end{vmatrix}=\begin{vmatrix}x+\sum_{i=1}^na_i&a_2&\cdots&a_n\\\\x+\sum_{i=1}^na_i&x+a_2&\cdots&a_n\\\\\vdots&\vdots&&\vdots\\\\x+\sum_{i=1}^na_i&a_2&\cdots&x+a_n\end{vmatrix}

=(x+i=1nai)1a2an1x+a2an1a2x+an=(x+i=1nai)1001x010x=\left.\left(x+\sum_{i=1}^na_i\right)\left|\begin{array}{cccc}1&a_2&\cdots&a_n\\1&x+a_2&\cdots&a_n\\\vdots&\vdots&&\vdots\\1&a_2&\cdots&x+a_n\end{array}\right.\right|=\left.\left(x+\sum_{i=1}^{n}a_{i}\right)\left|\begin{array}{cccc}1&0&\cdots&0\\1&x&\cdots&0\\\vdots&\vdots&&\vdots\\1&0&\cdots&x\end{array}\right.\right|

=(x+i=1nai)xn1.=\left(x+\sum_{i=1}^{n}a_{i}\right)x^{n-1}.

箭型行列式

  • 行列式特点

    • 有一条对角线上元素不为0,且有两条边元素不为0,其余元素全为0
  • 基本思路

    • 将两边其中的一边全部化成0,使其成为对角型行列式
  • 单条箭型

Dn=a1b2bnc2a2cnan=a1i=2nbiciaib2bna2anD_n=\begin{vmatrix}a_1&b_2&\cdots&b_n\\c_2&a_2&\\\vdots&&\ddots&\\c_n&&&a_n\end{vmatrix}=\begin{vmatrix}a_1-\sum_{i=2}^n\frac{b_ic_i}{a_i}&b_2&\cdots&b_n\\&a_2&&\\&&\ddots&\\&&&a_n\end{vmatrix}

=(a1i=2nbiciai)a2an.=\left(a_1-\sum_{i=2}^n\frac{b_ic_i}{a_i}\right)a_2\cdots a_n.

  • 双箭型
    • 基本思路:从最后一行开始,用bnb_n消去cnc_n,直到化简成对角型行列式

Dn=a1a2an1anc2b2cn1bn1cnbn=rb2bn1bn=rb2bnD_n=\begin{vmatrix}a_1&a_2&\cdots&a_{n-1}&a_n\\c_2&b_2&&&\\&\ddots&\ddots&&\\&&c_{n-1}&b_{n-1}&\\&&&c_n&b_n\end{vmatrix}=\begin{vmatrix}r&*&\cdots&*&*\\&b_2&&&\\&&\ddots&&\\&&&b_{n-1}&\\&&&&b_n\end{vmatrix}=rb_2\cdots b_n

r=a1a2c2b2+a3c2c3b2b3+(1)n+1anc2cnb2bn.r=a_{1}-a_{2}\frac{c_{2}}{b_{2}}+a_{3}\frac{c_{2}c_{3}}{b_{2}b_{3}}-\cdots+(-1)^{n+1}a_{n}\frac{c_{2}\cdots c_{n}}{b_{2}\cdots b_{n}}.

范德蒙德行列式

  • 证明使用数学归纳法证明,不再赘述。(记忆:下标大减小的全排列)

111x1x2xnx12x22xn2x1n1x2n1xnn1=1i<jn(xjxi)\begin{aligned}&\begin{vmatrix}1&1&\cdots&1\\x_1&x_2&\cdots&x_n\\x_1^2&x_2^2&\cdots&x_n^2\\\vdots&\vdots&&\vdots\\x_1^{n-1}&x_2^{n-1}&\cdots&x_n^{n-1}\end{vmatrix}=\prod_{1\leqslant i<j\leqslant n}\left(x_j-x_i\right)\end{aligned}

  • 需要转换成范德蒙德行列式的情况(指数很有特点)

Dn=a1na1n1b1a1b1n1b1na2na2n1b2a2b2n1b2nannann1bnanbnn1bnnan+1nan+1n1bn+1an+1bn+1n1bn+1n=D_n=\begin{vmatrix}a_1^n&a_1^{n-1}b_1&\ldots&a_1b_1^{n-1}&b_1^n\\a_2^n&a_2^{n-1}b_2&\ldots&a_2b_2^{n-1}&b_2^n\\\ldots&\ldots&\ldots&\ldots&\ldots\\a_n^n&a_n^{n-1}b_n&\ldots&a_nb_n^{n-1}&b_n^n\\a_{n+1}^n&a_{n+1}^{n-1}b_{n+1}&\ldots&a_{n+1}b_{n+1}^{n-1}&b_{n+1}^n\end{vmatrix}=

i=1n+1ain1b1a1(b1a1)n1(b1a1)n1b2a2(b2a2)n1(b2a2)n1bnan(bnan)n1(bnan)n1bn+1an+1(bn+1an+1)n1(bn+1an+1)n\begin{aligned}&\prod_{i=1}^{n+1}a_i^n\begin{vmatrix}1&\frac{b_1}{a_1}&\ldots&(\frac{b_1}{a_1})^{n-1}&(\frac{b_1}{a_1})^n\\1&\frac{b_2}{a_2}&\ldots&(\frac{b_2}{a_2})^{n-1}&(\frac{b_2}{a_2})^n\\\ldots&\ldots&\ldots&\ldots&\ldots\\1&\frac{b_n}{a_n}&\ldots&(\frac{b_n}{a_n})^{n-1}&(\frac{b_n}{a_n})^n\\1&\frac{b_{n+1}}{a_{n+1}}&\ldots&(\frac{b_{n+1}}{a_{n+1}})^{n-1}&(\frac{b_{n+1}}{a_{n+1}})^n\end{vmatrix}\end{aligned}

=1i<jn+1(aibjbiaj)=\prod_{1\leq i<j\leq n+1}(a_ib_j-b_ia_j)

加边法

  • 根据代数余子式展开定理,可以加上一边辅助边来辅助行列式的计算

D=x1a2a3ana1x2a3ana1a2x3ana1a2a3xn=100001x1a2a3an1a1x2a3an1a1a2x3an1a1a2a3xnD=\begin{vmatrix}x_1&a_2&a_3&\cdots&a_n\\a_1&x_2&a_3&\cdots&a_n\\a_1&a_2&x_3&\cdots&a_n\\\vdots&\vdots&\vdots&&\vdots\\a_1&a_2&a_3&\cdots&x_n\end{vmatrix}=\begin{vmatrix}1&0&0&0&\cdots&0\\1&x_{1}&a_{2}&a_{3}&\cdots&a_{n}\\1&a_{1}&x_{2}&a_{3}&\cdots&a_{n}\\1&a_{1}&a_{2}&x_{3}&\cdots&a_{n}\\\vdots&\vdots&\vdots&\vdots&&\vdots\\1&a_{1}&a_{2}&a_{3}&\cdots&x_{n}\end{vmatrix}

=1a1a2a3an1x1a100010x2a200100x3a301000xnan=\begin{vmatrix}1&-a_{1}&-a_{2}&-a_{3}&\cdots&-a_{n}\\1&x_{1}-a_{1}&0&0&\cdots&0\\1&0&x_{2}-a_{2}&0&\cdots&0\\1&0&0&x_{3}-a_{3}&\cdots&0\\\vdots&\vdots&\vdots&\vdots&&\vdots\\1&0&0&0&\cdots&x_{n}-a_{n}\end{vmatrix}

=1+k=1nakxkaka1a2a3an0x1a100000x2a200000x3a300000xnan=\begin{vmatrix}1+\sum_{k=1}^n\frac{a_k}{x_k-a_k}&-a_1&-a_2&-a_3&\cdots&-a_n\\0&x_1-a_1&0&0&\cdots&0\\0&0&x_2-a_2&0&\cdots&0\\0&0&0&x_3-a_3&\cdots&0\\\vdots&\vdots&\vdots&\vdots&&\vdots\\0&0&0&0&\cdots&x_n-a_n\end{vmatrix}

=(1+k=1nakxkak)(x1a1)(x2a2)(xnan)=\left(1+\sum_{k=1}^n\frac{a_k}{x_k-a_k}\right)(x_1-a_1)(x_2-a_2)\cdotp\cdotp\cdotp(x_n-a_n)

  • 加边法构造范德蒙德行列式

1+x11+x121+x1n1+x21+x221+x2n1+xn1+xn21+xnn=100011+x11+x121+x1n11+x21+x221+x2n11+xn1+xn21+xnn\left.\left|\begin{array}{cccc}1+x_1&1+x_1^2&\cdots&1+x_1^n\\1+x_2&1+x_2^2&\cdots&1+x_2^n\\\vdots&\vdots&\ddots&\vdots\\1+x_n&1+x_n^2&\cdots&1+x_n^n\end{array}\right.\right|=\left.\left|\begin{array}{ccccc}1&0&0&\cdots&0\\1&1+x_1&1+x_1^2&\cdots&1+x_1^n\\1&1+x_2&1+x_2^2&\cdots&1+x_2^n\\\vdots&\vdots&\vdots&\ddots&\vdots\\1&1+x_n&1+x_n^2&\cdots&1+x_n^n\end{array}\right.\right|

=11111x1x12x1n1x2x22x2n1xnxn2xnn=\left.\left|\begin{array}{ccccc}1&-1&-1&\cdots&-1\\1&x_1&x_1^2&\cdots&x_1^n\\1&x_2&x_2^2&\cdots&x_2^n\\\vdots&\vdots&\vdots&\ddots&\vdots\\1&x_n&x_n^2&\cdots&x_n^n\end{array}\right.\right|

=20001x1x12x1n1x2x22x2n1xnxn2xnn11111x1x12x1n1x2x22x2n1xnxn2xnn=\left.\left|\begin{array}{ccccc}2&0&0&\cdots&0\\1&x_1&x_1^2&\cdots&x_1^n\\1&x_2&x_2^2&\cdots&x_2^n\\\vdots&\vdots&\vdots&\ddots&\vdots\\1&x_n&x_n^2&\cdots&x_n^n\end{array}\right.\right|-\left|\begin{array}{ccccc}1&1&1&\cdots&1\\1&x_1&x_1^2&\cdots&x_1^n\\1&x_2&x_2^2&\cdots&x_2^n\\\vdots&\vdots&\vdots&\ddots&\vdots\\1&x_n&x_n^2&\cdots&x_n^n\end{array}\right|

=[2k=1nxkk=1n(xk1)]1i<jn(xjxi).=\left[2\prod_{k=1}^{n}x_{k}-\prod_{k=1}^{n}\left(x_{k}-1\right)\right]\prod_{1\leq i<j\leq n}\left(x_{j}-x_{i}\right).

  • 加两次边

0a1+a2a1+a3a1+ana2+a10a2+a3a2+ana3+a1a3+a20a3+anan+a1an+a2an+a30\left|\begin{matrix}0&a_1+a_2&a_1+a_3&\ldots&a_1+a_n\\a_2+a_1&0&a_2+a_3&\ldots&a_2+a_n\\a_3+a_1&a_3+a_2&0&\ldots&a_3+a_n\\\ldots&\ldots&\ldots&\ldots&\ldots\\a_n+a_1&a_n+a_2&a_n+a_3&\ldots&0\end{matrix}\right|

=1a1a2an00a1+a2a1+an0a2+a10a2+an0an+a1an+a20=\left|\begin{matrix}1&a_1&a_2&\ldots&a_n\\0&0&a_1+a_2&\ldots&a_1+a_n\\0&a_2+a_1&0&\ldots&a_2+a_n\\\ldots&\ldots&\ldots&\ldots&\ldots\\0&a_n+a_1&a_n+a_2&\ldots&0\end{matrix}\right|

=1a1a2an1a1a1a11a2a2a21ananan=1000001a1a2ana11a1a1a1a21a2a2a2an1ananan=\left|\begin{matrix}1&a_1&a_2&\dots&a_n\\-1&-a_1&a_1&\dots&a_1\\-1&a_2&-a_2&\dots&a_2\\\dots&\dots&\dots&\dots&\dots\\-1&a_n&a_n&\dots&-a_n\end{matrix}\right|=\left|\begin{matrix}1&0&0&0&\ldots&0\\0&1&a_1&a_2&\ldots&a_n\\a_1&-1&-a_1&a_1&\ldots&a_1\\a_2&-1&a_2&-a_2&\ldots&a_2\\\cdots&\cdots&\cdots&\cdots&\cdots\\a_n&-1&a_n&a_n&\ldots&-a_n\end{matrix}\right|

=1011101a1a2ana112a100a2102a20an1002an=\left|\begin{matrix}1&0&-1&-1&\ldots&-1\\0&1&a_1&a_2&\ldots&a_n\\a_1&-1&-2a_1&0&\ldots&0\\a_2&-1&0&-2a_2&\ldots&0\\\ldots&\ldots&\ldots&\ldots&\ldots\\a_n&-1&0&0&\ldots&-2a_n\end{matrix}\right|

  • 这样就化为变形的箭型行列式,将 3,4...(n+2)3,4...(n+2) 列乘12\frac{1}{2}加到第 1 列上去,再分别乘以12a1,12a2,,12an\frac{-1}{2a_{1}},\frac{-1}{2a_{2}},\ldots,\frac{-1}{2a_{n}}加到第 2 列上去,再按照第一列展开即可

两三角型

  • 主对角线旁两三角相同的情况(见加边法)

D=x1a2a3ana1x2a3ana1a2x3ana1a2a3xnD=\begin{vmatrix}x_1&a_2&a_3&\cdots&a_n\\a_1&x_2&a_3&\cdots&a_n\\a_1&a_2&x_3&\cdots&a_n\\\vdots&\vdots&\vdots&&\vdots\\a_1&a_2&a_3&\cdots&x_n\end{vmatrix}

  • 主对角线旁两三角不同的情况
    • 基本思路:将最后一列拆分,得到的两个行列式中,一个可以用递归的形式表示,另一个可以先用其他行减去最后一行,再按最后一列展开得到主对角型行列式。再利用对偶性(对行列式进行按行和按列操作是等价的),得出对称式,即可求解。

Dn=x1bbbax2bbaax3baaaxn=x1bbb+0ax2bb+0aaxn1b+0aaab+(xnb)D_n=\left|\begin{matrix}x_1&b&b&\ldots&b\\a&x_2&b&\ldots&b\\a&a&x_3&\ldots&b\\\cdots&\cdots&\cdots&\cdots&\cdots\\a&a&a&\ldots&x_n\end{matrix}\right|=\begin{vmatrix}x_1&b&\cdots&b&b+0\\a&x_2&\cdots&b&b+0\\\vdots&\vdots&\ddots&\vdots&\vdots\\a&a&\cdots&x_{n-1}&b+0\\a&a&\cdots&a&b+(x_n-b)\end{vmatrix}

=x1bbbax2bbaaxn1baaab+x1bb0ax2b0aaxn10aaa(xnb)=\begin{vmatrix}x_1&b&\cdots&b&b\\a&x_2&\cdots&b&b\\\vdots&\vdots&\ddots&\vdots&\vdots\\a&a&\cdots&x_{n-1}&b\\a&a&\cdots&a&b\end{vmatrix}+\begin{vmatrix}x_1&b&\cdots&b&0\\a&x_2&\cdots&b&0\\\vdots&\vdots&\ddots&\vdots&\vdots\\a&a&\cdots&x_{n-1}&0\\a&a&\cdots&a&(x_n-b)\end{vmatrix}

=x1ababa00x2aba000xn1a0aaab+(xnb)Dn1=\begin{vmatrix}x_1-a&b-a&\cdots&b-a&0\\0&x_2-a&\cdots&b-a&0\\\vdots&\vdots&\ddots&\vdots&\vdots\\0&0&\cdots&x_{n-1}-a&0\\a&a&\cdots&a&b\end{vmatrix}+(x_n-b)D_{n-1}

=bi=1n1(xia)+(xnb)Dn1=b\prod_{i=1}^{n-1}(x_i-a)+(x_n-b)D_{n-1}

注意到:

Dn=bi=1n1(xia)+(xnb)Dn1D_n=b\prod_{i=1}^{n-1}(x_i-a)+(x_n-b)D_{n-1}

根据行列式的对称性有:

Dn=+ai=1n1(xib)+(xna)Dn1D_n=+a\prod_{i=1}^{n-1}(x_i-b)+(x_n-a)D_{n-1}

综上解方程组得到:

Dn=bi=1n(xia)ai=1n(xib)baD_n=\frac{b\prod_{i=1}^n(x_i-a)-a\prod_{i=1}^n(x_i-b)}{b-a}

拉普拉斯展开式的应用

  • 基本思路:

    • 当0出现的次数多时,可以考虑交换行和列,将0凑在一起拼成一个小块再用拉普拉斯定理展开。
  • 拉普拉斯展开+递归

展开后得到递推式:

D2n=N1(2)A1(2n2)=(an2bn2)D2n2D_{2n}=N_{1}^{(2)}A_{1}^{(2n-2)}=(a_{n}^{2}-b_{n}^{2})D_{2n-2}

由递推式可得:

D2n=(an2bn2)(an12bn12)(a12b12)=i=1n(ai2bi2)D_{2n}=(a_{n}^{2}-b_{n}^{2})(a_{n-1}^{2}-b_{n-1}^{2})\cdots(a_{1}^{2}-b_{1}^{2})=\prod_{i=1}^{n}(a_{i}^{2}-b_{i}^{2})

逐差法

  • 基本思路:

    • 若行列式前后两列元素之差固定,则采用逐步作差的方法,依次用前一行减去后一行
  • 典例

Dn=012n2n1101n3n2210n4n3n2n3n401n1n2n310D_n=\begin{vmatrix}0&1&2&\ldots&n-2&n-1\\1&0&1&\ldots&n-3&n-2\\2&1&0&\ldots&n-4&n-3\\\ldots&\ldots&\ldots&\ldots&\ldots&\ldots\\n-2&n-3&n-4&\ldots&0&1\\n-1&n-2&n-3&\ldots&1&0\end{vmatrix}

=11111111111111111111n1n2n310=\begin{vmatrix}-1&1&1&\ldots&1&1\\-1&-1&1&\ldots&1&1\\-1&-1&-1&\ldots&1&1\\\cdots&\cdots&\cdots&\cdots&\cdots&\cdots\\-1&-1&-1&\ldots&-1&1\\n-1&n-2&n-3&\ldots&1&0\end{vmatrix}

=10000120001220012220n12n32n4nn1=\begin{vmatrix}-1&0&0&\ldots&0&0\\-1&-2&0&\ldots&0&0\\-1&-2&-2&\ldots&0&0\\\ldots&\ldots&\ldots&\ldots&\ldots&\ldots\\-1&-2&-2&\ldots&-2&0\\n-1&2n-3&2n-4&\ldots&n&n-1\end{vmatrix}

=(1)n1(2)n2(n1)=(-1)^{n-1}(-2)^{n-2}(n-1)

三对角型行列式

  • 基本思路:递推+数学归纳

Dn=abcabcaabcaD_n=\begin{vmatrix}a&b&&&&&\\c&a&b&&&&\\&c&a&\cdots&&&\\&&\cdots&\cdots&\cdots&&\\&&&\cdots&\cdots&a&b\\&&&&&c&a\end{vmatrix}

按第一列展开得递推关系式

Dn=aDn1bcDn2ωD_n=aD_{n-1}-bcD_{n-2 \omega}

再解特征方程可得:

x1=a+a24bc2,x2=aa24bc2.x_{1}=\frac{a+\sqrt{a^{2}-4bc}}{2},x_{2}=\frac{a-\sqrt{a^{2}-4bc}}{2} .

Dn=(x1n+1x2n+1)x1x2,(x1x2).D_{n}=\frac{\left(x_{1}^{n+1}-x_{2}^{n+1}\right)}{x_{1}-x_{2}},\left(x_{1}\neq x_{2}\right).